
ptg11539604

8
I/O Streams

What you see is all you get.
– Brian W. Kernighan

• Introduction
• Output
• Input
• I/O State
• I/O of User-Defined Types
• Formatting
• File Streams
• String Streams
• Advice

8.1 Introduction
The I/O stream library provides formatted and unformatted buffered I/O of text and numeric values.

An ostream converts typed objects to a stream of characters (bytes):

'c'

123

(123,45)

ostream

stream buffer

‘‘Somewhere’’

Typed values: Byte sequences:

An istream converts a stream of characters (bytes) to typed objects:

ptg11539604

86 I/O Streams Chapter 8

'c'

123

(123,45)

istream

stream buffer

‘‘Somewhere’’

Typed values: Byte sequences:

The operations on istreams and ostreams are described in §8.3 and §8.2. The operations are type-
safe, type-sensitive, and extensible to handle user-defined types.

Other forms of user interaction, such as graphical I/O, are handled through libraries that are not
part of the ISO standard and therefore not described here.

These streams can be used for binary I/O, be used for a variety of character types, be locale spe-
cific, and use advanced buffering strategies, but these topics are beyond the scope of this book.

8.2 Output
In <ostream>, the I/O stream library defines output for every built-in type. Further, it is easy to
define output of a user-defined type (§8.5). The operator << (‘‘put to’’) is used as an output opera-
tor on objects of type ostream; cout is the standard output stream and cerr is the standard stream for
reporting errors. By default, values written to cout are converted to a sequence of characters. For
example, to output the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
{

int i {10};
cout << i;

}

Output of different types can be combined in the obvious way:

void h(int i)
{

cout << "the value of i is ";
cout << i;
cout << '\n';

}

For h(10), the output will be:

ptg11539604

Section 8.2 Output 87

the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

void h2(int i)
{

cout << "the value of i is " << i << '\n';
}

This h2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is output as

a character rather than as a numerical value. For example:

void k()
{

int b = 'b'; // note: char implicitly converted to int
char c = 'c';
cout << 'a' << b << c;

}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation
that I used), so this will output a98c.

8.3 Input
In <istream>, the standard library offers istreams for input. Like ostreams, istreams deal with char-
acter string representations of built-in types and can easily be extended to cope with user-defined
types.

The operator >> (‘‘get from’’) is used as an input operator; cin is the standard input stream. The
type of the right-hand operand of >> determines what input is accepted and what is the target of the
input operation. For example:

void f()
{

int i;
cin >> i; // read an integer into i

double d;
cin >> d; // read a double-precision floating-point number into d

}

This reads a number, such as 1234, from the standard input into the integer variable i and a floating-
point number, such as 12.34e5, into the double-precision floating-point variable d.

Like output operations, input operations can be chained, so I could equivalently have written:

ptg11539604

88 I/O Streams Chapter 8

void f()
{

int i;
double d;
cin >> i >> d; // read into i and d

}

In both cases, the read of the integer is terminated by any character that is not a digit. By default,
>> skips initial whitespace, so a suitable complete input sequence would be

1234
12.34e5

Often, we want to read a sequence of characters. A convenient way of doing that is to read into a
string. For example:

void hello()
{

cout << "Please enter your name\n";
string str;
cin >> str;
cout << "Hello, " << str << "!\n";

}

If you type in Eric the response is:

Hello, Eric!

By default, a whitespace character, such as a space or a newline, terminates the read, so if you enter
Eric Bloodaxe pretending to be the ill-fated king of York, the response is still:

Hello, Eric!

You can read a whole line (including the terminating newline character) using the getline() function.
For example:

void hello_line()
{

cout << "Please enter your name\n";
string str;
getline(cin,str);
cout << "Hello, " << str << "!\n";

}

With this program, the input Eric Bloodaxe yields the desired output:

Hello, Eric Bloodaxe!

The newline that terminated the line is discarded, so cin is ready for the next input line.
The standard strings have the nice property of expanding to hold what you put in them; you

don’t hav e to precalculate a maximum size. So, if you enter a couple of megabytes of semicolons,
the program will echo pages of semicolons back at you.

ptg11539604

Section 8.4 I/O State 89

8.4 I/O State
An iostream has a state that we can examine to determine whether an operation succeeded. The
most common use is to read a sequence of values:

vector<int> read_ints(istream& is)
{

vector<int> res;
int i;
while (is>>i)

res.push_back(i);
return res;

}

This reads from is until something that is not an integer is encountered. That something will typi-
cally be the end of input. What is happening here is that the operation is>>i returns a reference to
is, and testing an iostream yields true if the stream is ready for another operation.

In general, the I/O state holds all the information needed to read or write, such as formatting
information (§8.6), error state (e.g., has end-of-input been reached?), and what kind of buffering is
used. In particular, a user can set the state to reflect that an error has occurred (§8.5) and clear the
state if an error wasn’t serious. For example, we could imagine reading a sequence of integers than
might contain some form of nesting:

while (cin) {
for (int i; cin>>i;) {

// ... use the integer ...
}

if (cin.eof()) {
// .. all is well we reached the end-of-file ...

}
else if (cin.fail()) { // a potentially recoverable error

cin.clear(); // reset the state to good()
char ch;
if (cin>>ch) { // look for nesting represented by { ... }

switch (ch) {
case '{':

// ... start nested structure ...
break;

case '}':
// ... end nested structure ...
break;

default:
cin.setstate(ios_base::failbit); // add fail() to cin’s state

}
}

}
// ...

}

ptg11539604

90 I/O Streams Chapter 8

8.5 I/O of User-Defined Types
In addition to the I/O of built-in types and standard strings, the iostream library allows programmers
to define I/O for their own types. For example, consider a simple type Entr y that we might use to
represent entries in a telephone book:

struct Entry {
string name;
int number;

};

We can define a simple output operator to write an Entr y using a {"name",number} format similar to
the one we use for initialization in code:

ostream& operator<<(ostream& os, const Entry& e)
{

return os << "{\"" << e.name << "\", " << e.number << "}";
}

A user-defined output operator takes its output stream (by reference) as its first argument and
returns it as its result.

The corresponding input operator is more complicated because it has to check for correct for-
matting and deal with errors:

istream& operator>>(istream& is, Entry& e)
// read { "name" , number } pair. Note: for matted with { " " , and }

{
char c, c2;
if (is>>c && c=='{' && is>>c2 && c2=='"') { // star t with a { "

string name; // the default value of a string is the empty string: ""
while (is.get(c) && c!='"') // anything before a " is part of the name

name+=c;

if (is>>c && c==',') {
int number = 0;
if (is>>number>>c && c=='}') { // read the number and a }

e = {name ,number}; // assign to the entry
return is;

}
}

}
is.state_base::failbit); // register the failure in the stream
return is;

}

An input operation returns a reference to its istream which can be used to test if the operation suc-
ceeded. For example, when used as a condition, is>>c means ‘‘Did we succeed at reading from is

into c?’’
The is>>c skips whitespace by default, but is.g et(c) does not, so that this Entr y-input operator

ignores (skips) whitespace outside the name string, but not within it. For example:

ptg11539604

Section 8.5 I/O of User-Defined Types 91

{ "John Marwood Cleese" , 123456 }
{"Michael Edward Palin",987654}

We can read such a pair of values from input into an Entr y like this:

for (Entr y ee; cin>>ee;) // read from cin into ee
cout << ee << '\n'; // wr ite ee to cout

The output is:

{"John Marwood Cleese", 123456}
{"Michael Edward Palin", 987654}

See §7.3 for a more systematic technique for recognizing patterns in streams of characters (regular
expression matching).

8.6 Formatting
The iostream library provides a large set of operations for controlling the format of input and out-
put. The simplest formatting controls are called manipulators and are found in <ios>, <istream>,
<ostream>, and <iomanip> (for manipulators that take arguments): For example, we can output inte-
gers as decimal (the default), octal, or hexadecimal numbers:

cout << 1234 << ',' << hex << 1234 << ',' << oct << 1234 << '\n'; // pr int 1234,4d2,2322

We can explicitly set the output format for floating-point numbers:

constexpr double d = 123.456;

cout << d << "; " // use the default for mat for d
<< scientific << d << "; " // use 1.123e2 style for mat for d
<< hexfloat << d << "; " // use hexadecimal notation for d
<< fixed << d << "; " // use 123.456 style for mat for f
<< defaultfloat << d << '\n'; // use the default for mat for d

This produces:

123.456; 1.234560e+002; 0x1.edd2f2p+6; 123.456000; 123.456

Precision is an integer that determines the number of digits used to display a floating-point number:
• The general format (defaultfloat) lets the implementation choose a format that presents a

value in the style that best preserves the value in the space available. The precision specifies
the maximum number of digits.

• The scientific format (scientific) presents a value with one digit before a decimal point and
an exponent. The precision specifies the maximum number of digits after the decimal point.

• The fixed format (fixed) presents a value as an integer part followed by a decimal point and a
fractional part. The precision specifies the maximum number of digits after the decimal
point.

Floating-point values are rounded rather than just truncated, and precision() doesn’t affect integer
output. For example:

ptg11539604

92 I/O Streams Chapter 8

cout.precision(8);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

cout.precision(4);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

This produces:

1234.5679 1234.5679 123456
1235 1235 123456

These manipulators as ‘‘sticky’’; that is, it persists for subsequent floating-point operations.

8.7 File Streams
In <fstream>, the standard library provides streams to and from a file:

• ifstreams for reading from a file
• ofstreams for writing to a file
• fstreams for reading from and writing to a file

For example:

ofstream ofs("target"); // ‘‘o’’ for ‘‘output’’
if (!ofs)

error("couldn't open 'target' for writing");

Testing that a file stream has been properly opened is usually done by checking its state.

fstream ifs; // ‘‘i’’ for ‘‘input’’
if (!ifs)

error("couldn't open 'source' for reading");

Assuming that the tests succeeded, ofs can be used as an ordinary ostream (just like cout) and ifs

can be used as an ordinary istream (just like cin).
File positioning and more detailed control of the way a file is opened is possible, but beyond the

scope of this book.

8.8 String Streams
In <sstream>, the standard library provides streams to and from a string:

• istringstreams for reading from a string

• ostringstreams for writing to a string

• stringstreams for reading from and writing to a string.
For example:

void test()
{

ostringstream oss;

ptg11539604

Section 8.8 String Streams 93

oss << "{temperature," << scientific << 123.4567890 << "}";
cout << oss.str() << '\n';

}

The result from an istringstream can be read using str(). One common use of an ostringstream is to
format before giving the resulting string to a GUI. Similarly, a string received from a GUI can be
read using formatted input operations (§8.3) by putting it into an istringstream.

A stringstream can be used for both reading and writing. For example, we can define an opera-
tion that can convert any type with a string representation to another that also has a string represen-
tation:

template<typename Target =string, typename Source =string>
Targ et to(Source arg) // convert Source to Target
{

stringstream interpreter;
Targ et result;

if (!(interpreter << arg) // wr ite arg into stream
|| !(interpreter >> result) // read result from stream
|| !(interpreter >> std::ws).eof()) // stuff left in stream?
throw runtime_error{"to<>() failed"};

return result;
}

A function template argument needs to be explicitly mentioned only if it cannot be deduced or if
there is no default, so we can write:

auto x1 = to<string,double>(1.2); // very explicit (and verbose)
auto x2 = to<string>(1.2); // Source is deduced to double
auto x3 = to<>(1.2); // Target is defaulted to string; Source is deduced to double
auto x4 = to(1.2); // the <> is redundant;

// Target is defaulted to string; Source is deduced to double

If all function template arguments are defaulted, the <> can be left out.
I consider this a good example of the generality and ease of use that can be achieved by a com-

bination of language features and standard-library facilities.

8.9 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 38 of [Stroustrup,2013].
[2] iostreams are type-safe, type-sensitive, and extensible; §8.1.
[3] Define << and >> for user-defined types with values that have meaningful textual representa-

tions; §8.1, §8.2, §8.3.
[4] Use cout for normal output and cerr for errors; §8.1.
[5] There are iostreams for ordinary characters and wide characters, and you can define an

iostream for any kind of character; §8.1.

ptg11539604

94 I/O Streams Chapter 8

[6] Binary I/O is supported; §8.1.
[7] There are standard iostreams for standard I/O streams, files, and strings; §8.2, §8.3, §8.7,

§8.8.
[8] Chain << operations for a terser notation; §8.2.
[9] Chain >> operations for a terser notation; §8.3.
[10] Input into strings does not overflow; §8.3.
[11] By default >> skips initial whitespace; §8.3.
[12] Use the stream state fail to handle potentially recoverable I/O errors; §8.4.
[13] You can define << and >> operators for your own types; §8.5.
[14] You don’t need to modify istream or ostream to add new << and >> operators; §8.5.
[15] Use manipulators to control formatting; §8.6.
[16] precision() specifications apply to all following floating-point output operations; §8.6.
[17] Floating-point format specifications (e.g., scientific) apply to all following floating-point out-

put operations; §8.6.
[18] #include <ios> when using standard manipulators; §8.6.
[19] #include <iomanip> when using standard manipulators taking arguments; §8.6.
[20] Don’t try to copy a file stream.
[21] Remember to check that a file stream is attached to a file before using it; §8.7.
[22] Use stringstreams for in-memory formatting; §8.8.
[23] You can define conversions between any two types that both have string representation; §8.8.

	8 I/O Streams
	8.1 Introduction
	8.2 Output
	8.3 Input
	8.4 I/O State
	8.5 I/O of User-Defined Types
	8.6 Formatting
	8.7 File Streams
	8.8 String Streams
	8.9 Advice

